Strona 11 z 31 MMAP-P0_100 Zadanie 11. (0–2) Dany jest prostokąt o bokach długości i , gdzie > . Obwód tego prostokątajest równy 30. Jeden z boków prostokąta jest o5 krótszy od drugiego. Uzupełnij zdanie. Wybierz dwie właściwe odpowiedzi spośród oznaczonych literami A–F i wpisz te litery w wykropkowanych miejscach.
Funkcja kwadratowa $f(x)=-x^2+bx+c$ ma dwa miejsca zerowe: $x_1=-1$ i $x_2=12$. Oblicz największą wartość tej funkcji. Zakoduj kolejno, od lewej do prawej, cyfrę jedności i pierwsze dwie cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku. Funkcja kwadratowa jest określona wzorem $f(x)=-2(x+3)(x-5)$. Liczby $x_1,\ x_2$ są różnymi miejscami zerowymi funkcji $f$. ZatemA. $x_1+x_2=-8$B. $x_1+x_2=-2$C. $x_1+x_2=2$D. $x_1+x_2=8$ Funkcja $f$ jest określona wzorem $\begin{split}f(x)=\frac{x-1}{x^2+1}\end{split}$ dla każdej liczby rzeczywistej $x$. Wyznacz równanie stycznej do wykresu tej funkcji w punkcie $P=(1,0)$. Dany jest nieskończony ciąg geometryczny $(a_n)$ określony dla $n\geqslant 1$, w którym iloraz jest równy pierwszemu wyrazowi, a suma wszystkich wyrazów tego ciągu jest równa 12. Oblicz pierwszy wyraz tego ciągu. Zakoduj kolejno pierwsze trzy cyfry po przecinku otrzymanego wyniku. Oblicz granicę $\begin{split}\lim_{n\to\infty}\left(\frac{11n^3+6n+5}{6n^3+1}-\frac{2n^2+2n+1}{5n^2-4}\right)\end{split}$.W poniższe kratki wpisz kolejno cyfrę jedności i pierwsze dwie cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku. Trójkąt ABC jest wpisany w okrąg o środku S. Kąty wewnętrzne CAB, ABC i BCA tego trójkąta są równe, odpowiednio, $\alpha$, $2\alpha$ i $4\alpha$.Wykaż, że trójkąt ABC jest rozwartokątny, i udowodnij, że miary wypukłych kątów środkowych ASB, ASC i BSC tworzą w podanej kolejności ciąg arytmetyczny. Podstawa $AB$ trójkąta równoramiennego $ABC$ ma długość 8 oraz $\left|\sphericalangle BAC\right|=30^{\circ}$. Oblicz długość środkowej $AD$ tego trójkąta.
Wnioski wynikające z analizy wyników osiąganyc przez absolwentów Liceum na maturze pisemnej z matematyki – poziom podstawowy Ustalono ę ują r r um r r j m ur : m j ż % u możl do dob → , m g ją o r 30 – 59% → r ę , m g ją o r
Matura z matematyki 2008 – Maj podstawowa Matura z matematyki 2008 okazała się prosta. Zadania maturalne już teraz online! Sprawdź jaki był klucz odpowiedzi? Nie zwlekaj i dokonaj analizy zadań poniższego arkusza. Arkusz i odpowiedzi Centralnej Komisji Edukacyjnej Matura z matematyki 2008 – Maj Poziom Podstawowy – Arkusz CKE Matura z matematyki 2008 – Maj Poziom Podstawowy – Odpowiedzi CKE Musisz wiedzieć, że poniższe zadania maturalne są bardzo dobrym materiałem ćwiczeniowym dla tegorocznych maturzystów! Zauważ zależności pomiędzy maturami z poprzednich lat. Zwróć szczególną uwagę na te zadania maturalne, które co roku powtarzają się. Wtedy będziesz mógł skupić całą swoją uwagę na naukę tych konkretnych zagadnień. W efekcie zaoszczędzisz czas na inne sprawy, nie związane ze szkołą i nauką. Matura z matematyki 2008 – zadania i odpowiedzi online Zadanie 1. (4 pkt) Na poniższym rysunku przedstawiono łamaną ABCD, która jest wykresem funkcji y = f ( x) . Korzystając z tego wykresu: a) zapisz w postaci przedziału zbiór wartości funkcji f , b) podaj wartość funkcji f dla argumentu \(x = 1 – \sqrt {10} ,\) c) wyznacz równanie prostej BC , d) oblicz długość odcinka BC . Zobacz na stronie Zobacz na YouTube Zadanie 2. (4 pkt) Liczba przekątnych wielokąta wypukłego, w którym jest n boków i \(n \ge 3\) wyraża się wzorem \(P\left( n \right) = \frac{{n\left( {n – 3} \right)}}{2}\) Wykorzystując ten wzór: a) oblicz liczbę przekątnych w dwudziestokącie wypukłym. b) oblicz, ile boków ma wielokąt wypukły, w którym liczba przekątnych jest pięć razy większa od liczby boków. c) sprawdź, czy jest prawdziwe następujące stwierdzenie: Każdy wielokąt wypukły o parzystej liczbie boków ma parzystą liczbę przekątnych. Odpowiedź uzasadnij. Zobacz na stronie Zobacz na YouTube Zadanie 3. (4 pkt) Rozwiąż równanie \({4^{23}}x – {32^9}x = {16^4} \cdot {\left( {{4^4}} \right)^4}\). Zapisz rozwiązanie tego równania w postaci \({2^k}\), gdzie k jest liczbą całkowitą. Zobacz na stronie Zobacz na YouTube Zadanie 4. (3 pkt) Koncern paliwowy podnosił dwukrotnie w jednym tygodniu cenę benzyny, pierwszy raz o 10%, a drugi raz o 5%. Po obu tych podwyżkach jeden litr benzyny, wyprodukowanej przez ten koncern, kosztuje 4,62 zł. Oblicz cenę jednego litra benzyny przed omawianymi podwyżkami. Treść dostępna po opłaceniu abonamentu Ucz się matematyki już od 25 zł. Instrukcja premium Uzyskaj dostęp do całej strony Wesprzyj rozwój filmów matematycznych Zaloguj się lub Wykup Sprawdź Wykup Anuluj Pełny dostęp do zawartości na 15 dni za dostęp do zawartości na 30 dni za dostęp do zawartości na 45 dni za zł. Anuluj Zad 5. Matura 2008 (5 pkt). Nieskończony ciąg liczbowy \(\left( {{a_n}} \right)\) jest określony wzorem \({a_n} = 2 – \frac{1}{n},\quad n = 1,2,3…\quad .\) a) Oblicz, ile wyrazów ciągu \(\left( {{a_n}} \right)\) jest mniejszych od 1,975. b) Dla pewnej liczby x trzywyrazowy ciąg \(\left( {{a_2},{a_7},x} \right)\) jest arytmetyczny. Oblicz x. Treść dostępna po opłaceniu abonamentu. Zadanie 6. (5 pkt) Prosta o równaniu 5x + 4y −10 = 0 przecina oś Ox układu współrzędnych w punkcie A oraz oś Oy w punkcie B . Oblicz współrzędne wszystkich punktów C leżących na osi Ox i takich, że trójkąt ABC ma pole równe 35 . Treść dostępna po opłaceniu abonamentu. Zadanie 7. (4 pkt) Dany jest trapez, w którym podstawy mają długość 4 cm i 10 cm oraz ramiona tworzą z dłuższą podstawą kąty o miarach 30° i 45° . Oblicz wysokość tego trapezu. Treść dostępna po opłaceniu abonamentu. Zadanie 8. (4 pkt) Dany jest wielomian \(W(x) = {x^3} – 5{x^2} – 9x + 45.\) a) Sprawdź, czy punkt A = (1, 30) należy do wykresu tego wielomianu. b) Zapisz wielomian W w postaci iloczynu trzech wielomianów stopnia pierwszego. Treść dostępna po opłaceniu abonamentu. Zadanie 9. (5 pkt) Oblicz najmniejszą i największą wartość funkcji kwadratowej f (x) = (2x +1)(x − 2) w przedziale \(\left\langle { – 2,2} \right\rangle .\) Treść dostępna po opłaceniu abonamentu. Zadanie 10. (3 pkt) Rysunek przedstawia fragment wykresu funkcji h , określonej wzorem \(h\left( x \right) = \frac{a}{x}\quad dla\;x \ne 0\). Wiadomo, że do wykresu funkcji h należy punkt P = (2,5). a) Oblicz wartość współczynnika a . b) Ustal, czy liczba h(π) − h(−π) jest dodatnia czy ujemna. c) Rozwiąż nierówność h( x) > 5. Treść dostępna po opłaceniu abonamentu. Zadanie 11. (5 pkt) Pole powierzchni bocznej ostrosłupa prawidłowego trójkątnego równa się \(\frac{{{a^2}\sqrt {15} }}{4}\) gdzie a oznacza długość krawędzi podstawy tego ostrosłupa. Zaznacz na poniższym rysunku kąt nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy. Miarę tego kąta oznacz symbolem β . Oblicz cosβ i korzystając z tablic funkcji trygonometrycznych odczytaj przybliżoną wartość β z dokładnością do 1° . Treść dostępna po opłaceniu abonamentu. Zadanie 12. (4 pkt) Rzucamy dwa razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo każdego z następujących zdarzeń: a) A – w każdym rzucie wypadnie nieparzysta liczba oczek. b) B – suma oczek otrzymanych w obu rzutach jest liczbą większą od 9. c) C – suma oczek otrzymanych w obu rzutach jest liczbą nieparzystą i większą od 9. Treść dostępna po opłaceniu abonamentu. Matura z matematyki – Spis treści Matura z matematyki 2017 – Maj podstawowa Matura z matematyki 2016 – Maj podstawowa Matura z matematyki 2015 – Maj podstawowa Próbna matura z matematyki 2015 – CKE podstawowa Przykładowa matura z matematyki 2015 CKE Matura z matematyki 2014 – Maj podstawowa Matura z matematyki 2013 – Maj podstawowa Matura z matematyki 2013 – Czerwiec podstawowa Matura z matematyki 2012 – Maj podstawowa Matura z matematyki 2012 – Czerwiec podstawowa Matura z matematyki 2012 – Sierpień podstawowa Matura z matematyki 2011 – Maj podstawowa Matura z matematyki 2010 – Maj podstawowa Matura z matematyki 2009 – Maj podstawowa Matura z matematyki 2008 – Maj podstawowa Matura z matematyki 2007 – Maj podstawowa Matura z matematyki 2006 – Maj podstawowa Matura z matematyki 2005 – Maj podstawowa Matura z matematyki 2003 – Maj podstawowa Bądź na bieżąco z Sprawdź także: Matura 2023 - podpowiadamy, jak skutecznie się przygotować. Podczas matury z matematyki liczą się szczegóły: przecinki, minusy, czy plusy. - Uczniowie podczas Rok: 2009 Instytucja: CKE Temat: Matematyka Dla przedmiotu Matematyka z kategorii Matura poziom podstawowy znaleźliśmy dokładnie 2 arkusze do pobrania za darmo z Matura matematyka 2009 maj (poziom podstawowy). Arkusze pochodzą z roku 2009 od CKE . PDF pytania Matematyka 2009 maj matura podstawowa - POBIERZ PDF PDF odpowiedzi Matematyka 2009 maj matura podstawowa odpowiedzi - POBIERZ PDF Testy z matematyki, angielskiego, niemieckiego, hiszpańskiego, francuskiego, włoskiego i rosyjskiego. Test z WOS, matura 2023 (maj) Test z WOS, matura 2023

Matura z matematyki 2009 – Maj podstawowa Czy wiesz, że matura z matematyki 2009 jest idealnym materiałem ćwiczeniowym do kolejnych egzaminów maturalnych? Zobacz arkusz i odpowiedzi do zadań online. Arkusz Centralnej Komisji Edukacyjnej Matura z matematyki 2009 – Maj Poziom Podstawowy – Arkusz Zapamiętaj! Niektóre zadania maturalne co roku powtarzają się – zmieniają się tylko dane do zadania i liczby. Zadanie 1.(5 pkt). Funkcja f określona jest wzorem \(f(x) = \left\{ {\begin{array}{*{20}{c}}{2x – 3\quad \,\,dla\;\quad x < 2\quad \;}\\{\;\;\quad 1\quad \quad dla\;\quad 2 \le x \le 4}\end{array}} \right.\) a) Uzupełnij tabelę: b) Narysuj wykres funkcji f . c) Podaj wszystkie liczby całkowite x , spełniające nierówność \(f\left( x \right){\rm{ }} \ge {\rm{ }} – 6{\rm{ }}.\) Zobacz na stronie Zobacz na YouTube Zadanie 2. (3 pkt) Dwaj rzemieślnicy przyjęli zlecenie wykonania wspólnie 980 detali. Zaplanowali, że każdego dnia pierwszy z nich wykona m, a drugi n detali. Obliczyli, że razem wykonają zlecenie w ciągu 7 dni. Po pierwszym dniu pracy pierwszy z rzemieślników rozchorował się i wtedy drugi, aby wykonać całe zlecenie, musiał pracować o 8 dni dłużej niż planował, (nie zmieniając liczby wykonywanych codziennie detali). Oblicz m i n . Zobacz na stronie Zobacz na YouTube Zadanie 3. (5 pkt) Wykres funkcji f danej wzorem f (x) = -2x2 przesunięto wzdłuż osi Ox o 3 jednostki w prawo oraz wzdłuż osi Oy o 8 jednostek w górę, otrzymując wykres funkcji g . a) Rozwiąż nierówność f (x) + 5 < 3x . b) Podaj zbiór wartości funkcji g . c) Funkcja g określona jest wzorem \(g\left( x \right) = – 2{x^2} + bx + c.\) Oblicz b i c. Odpowiedź do punktu a) Zobacz na stronie Zobacz na YouTube Odpowiedź do punktu b) Zobacz na stronie Zobacz na YouTube Odpowiedź do punktu c) Zobacz na stronie Zobacz na YouTube Zadanie 4. (3 pkt) Wykaż, że liczba \({3^{54}}\) jest rozwiązaniem równania \({243^{11}} – {81^{14}} + 7x = {9^{27}}.\) Treść dostępna po opłaceniu abonamentu Ucz się matematyki już od 25 zł. Instrukcja premium Uzyskaj dostęp do całej strony Wesprzyj rozwój filmów matematycznych Zaloguj się lub Wykup Sprawdź Wykup Anuluj Pełny dostęp do zawartości na 15 dni za dostęp do zawartości na 30 dni za dostęp do zawartości na 45 dni za zł. Anuluj Zadanie 5. (5 pkt) Wielomian W dany jest wzorem \(W(x) = {x^3} + a{x^2} – 4x + b.\) a) Wyznacz a, b oraz c tak, aby wielomian W był równy wielomianowi P, gdy \[P(x) = {x^3} + \left( {2a + 3} \right){x^2} + \left( {a + b + c} \right)x – 1.\] b) Dla a = 3 i b = 0 zapisz wielomian W w postaci iloczynu trzech wielomianów stopnia pierwszego. Odpowiedź do punktu a) Treść dostępna po opłaceniu abonamentu. Odpowiedź do punktu b) Treść dostępna po opłaceniu abonamentu. Zadanie 6. (5 pkt) Miara jednego z kątów ostrych w trójkącie prostokątnym jest równa \(\alpha .\) a) Uzasadnij, że spełniona jest nierówność \(\sin \alpha – tg\alpha < 0.\) b) Dla \(\sin \alpha = \frac{{2\sqrt 2 }}{3}\) oblicz wartość wyrażenia \({\cos ^3}\alpha + \cos \alpha \cdot {\sin ^2}\alpha .\) Odpowiedź do punktu a) Treść dostępna po opłaceniu abonamentu. Odpowiedź do punktu b) Treść dostępna po opłaceniu abonamentu. Zadanie 7. (6 pkt) Dany jest ciąg arytmetyczny \(\left( {{a}_{n}} \right)\) dla \(n \ge 1\) w którym \({a_7} = 1,\quad {a_{11}} = 9.\) a) Oblicz pierwszy wyraz \({a_1}\) i różnicę r ciągu \(\left( {{a}_{n}} \right)\). b) Sprawdź, czy ciąg \(\left( {{a_7},{a_8},{a_{11}}} \right)\)jest geometryczny. c) Wyznacz takie n, aby suma n początkowych wyrazów ciągu \(\left( {{a}_{n}} \right)\) miała wartość najmniejszą. Odpowiedź do punktu a) Treść dostępna po opłaceniu abonamentu. Odpowiedź do punktu b) Treść dostępna po opłaceniu abonamentu. Odpowiedź do punktu c) Treść dostępna po opłaceniu abonamentu. Zadanie 8. (4 pkt) W trapezie ABCD długość podstawy CD jest równa 18 , a długości ramion trapezu AD i BC są odpowiednio równe 25 i 15. Kąty ADB i DCB, zaznaczone na rysunku, mają równe miary. Oblicz obwód tego trapezu. Treść dostępna po opłaceniu abonamentu. Zadanie 9. (4 pkt) Punkty B = (0,10) i O = (0,0) są wierzchołkami trójkąta prostokątnego OAB, w którym \( \left| \sphericalangle OAB \right|=90{}^\circ \). Przyprostokątna OA zawiera się w prostej o równaniu \(y = \frac{1}{2}x\,.\) Oblicz współrzędne punktu A i długość przyprostokątnej OA. Treść dostępna po opłaceniu abonamentu. Zadanie 10. (5 pkt) Tabela przedstawia wyniki części teoretycznej egzaminu na prawo jazdy. Zdający uzyskał wynik pozytywny, jeżeli popełnił co najwyżej dwa błędy. a) Oblicz średnią arytmetyczną liczby błędów popełnionych przez zdających ten egzamin. Wynik podaj w zaokrągleniu do całości. b) Oblicz prawdopodobieństwo, że wśród dwóch losowo wybranych zdających tylko jeden uzyskał wynik pozytywny. Wynik zapisz w postaci ułamka zwykłego nieskracalnego. Treść dostępna po opłaceniu abonamentu. Zadanie 11. (5 pkt) Powierzchnia boczna walca po rozwinięciu na płaszczyznę jest prostokątem. Przekątna tego prostokąta ma długość 12 i tworzy z bokiem, którego długość jest równa wysokości walca, kąt o mierze \(30^\circ .\) a) Oblicz pole powierzchni bocznej tego walca. b) Sprawdź, czy objętość tego walca jest większa od \(18\sqrt 3 \). Odpowiedź uzasadnij. Treść dostępna po opłaceniu abonamentu. Matura z matematyki – Spis treści Matura z matematyki 2017 – Maj podstawowa Matura z matematyki 2016 – Maj podstawowa Matura z matematyki 2015 – Maj podstawowa Próbna matura z matematyki 2015 – CKE podstawowa Przykładowa matura z matematyki 2015 CKE Matura z matematyki 2014 – Maj podstawowa Matura z matematyki 2013 – Maj podstawowa Matura z matematyki 2013 – Czerwiec podstawowa Matura z matematyki 2012 – Maj podstawowa Matura z matematyki 2012 – Czerwiec podstawowa Matura z matematyki 2012 – Sierpień podstawowa Matura z matematyki 2011 – Maj podstawowa Matura z matematyki 2010 – Maj podstawowa Matura z matematyki 2009 – Maj podstawowa Matura z matematyki 2008 – Maj podstawowa Matura z matematyki 2007 – Maj podstawowa Matura z matematyki 2006 – Maj podstawowa Matura z matematyki 2005 – Maj podstawowa Matura z matematyki 2003 – Maj podstawowa Bądź na bieżąco z

\n\n\n \nmatura z matematyki maj 2009
matura 2022 maj. Język angielski, matura 2022 - poziom dwujęzyczny - pytania i odpowiedzi. DATA: 9 maja 2022 r. kierunki po maturze z matematyki i informatyki Odpowiedzi do matury 2022 z matematyki na poziomie rozszerzonym publikujemy poniżej. Nieoficjalne odpowiedzi i wskazówki, jak należało rozwiązać zadania, przygotowują dla nas eksperci z niepublicznego liceum. Arkusz z matematyki rozszerzonej rozwiązują dla nas matematycy z Niepublicznego Liceum Ogólnokształcącego w Bielawie. Te nieoficjalne rozwiązania zadań pozwolą maturzystom na wstępne poznanie swoich wyników, które są decydujące w rekrutacji na studia. Dzięki temu zdający zaoszczędzą sobie wielu stresów i nerwów podczas oczekiwania na oficjalne wyniki matury 2022. Matura 2022, matematyka - ODPOWIEDZI, rozwiązania zadań [POZIOM ROZSZERZONY]Matematyka rozszerzona to jeden z najczęściej wybieranych przedmiotów dodatkowych na maturze 2022. fot. fot. fot. Odpowiedzi do matury 2022 z matematyki rozszerzonej ‧ fot. Odpowiedzi do matury 2022 z matematyki rozszerzonej ‧ fot. Odpowiedzi do matury 2022 z matematyki rozszerzonej ‧ fot. Odpowiedzi do matury 2022 z matematyki rozszerzonej ‧ fot. Odpowiedzi do matury 2022 z matematyki rozszerzonej ‧ fot. Odpowiedzi do matury 2022 z matematyki rozszerzonej ‧ fot. fot. fot. Odpowiedzi do matury 2022 z matematyki rozszerzonej ‧ fot. Odpowiedzi do matury 2022 z matematyki rozszerzonej ‧ fot. fot. Odpowiedzi do matury 2022 z matematyki rozszerzonej ‧ fot. Odpowiedzi do matury 2022 z matematyki rozszerzonej ‧ fot. Matura 2022, matematyka - ARKUSZ CKE, zadania na poziomie rozszerzonym [ 2022 rozpoczęła się 4 maja i potrwa do 23 maja. W środę, 11 maja, oprócz matematyki rozszerzonej po południu zaplanowano maturę z języka hiszpańskiego na poziomie rozszerzonym. W czwartek, 12 maja, według harmonogramu CKE odbędzie się matura 2022 z biologii na poziomie rozszerzonym, a po południu z jęz. rosyjskiego. Przed weekendem w piątek, 13 maja, na maturzystów czeka egzamin rozszerzony z wiedzy o społeczeństwie, a po południu z jęz. niemieckiego 2022 - kiedy wyniki, jakie zasadyW tym roku maturzyści muszą podejść do trzech przedmiotów na poziomie podstawowym, czyli polskiego, matematyki i języka obcego, a także do minimum jednego przedmiotu na poziomie rozszerzonym. Żeby zdać maturę, z podstaw trzeba uzyskać co najmniej 30 proc., do rozszerzenia wystarczy po prostu podejść. Ostrzegamy też wszystkich, którzy w internecie natrafili na przecieki maturalne 2022. Nie jest możliwe, aby arkusze CKE, pytania i odpowiedzi z matury pojawiły się w sieci przed oficjalnym rozpoczęciem testu. Jeśli taka sytuacja miałaby miejsce, egzamin dojrzałości musiałby zostać matur 2022 w internecie (a także w szkołach) zostaną opublikowane we wtorek 5 lipca. Będzie można je sprawdzić za pośrednictwem portalu uruchomionego przez właściwą Okręgową Komisję Edukacyjną. W tym celu trzeba będzie wejść w zakładkę "Uczeń", a następnie wpisać swój PESEL oraz hasło, które każdy maturzysta otrzymał wcześniej w swojej matury 2022 w całej Polsce przystąpi 384 tys. osób, w tym 289,3 tys. to tegoroczni absolwenci szkół średnich. Wśród zdających są też maturzyści, którzy poprawiają oblany egzamin, albo walczą o wyższy wynik lub zdecydowali się na inny przedmiot niż w ubiegłych latach. Maturę 2022 zdaje też 41 Ukraińców, którzy przyjechali do Polski po wybuchu wojny. . 780 442 307 458 224 341 81 434

matura z matematyki maj 2009